Enhancing surveillance for malaria elimination in Indonesia and the Philippines

(OPSIN and ENSURE)

Supargiyono

APMEN 2018
WHO Surveillance Guidelines, 2018
Study sites: Indonesia and Philippines

- 3 sites in the Philippines with different transmission levels (high, low, elimination)
- Kulon Progo Regency in Yogyakarta, Indonesia (low transmission)
Integrated surveillance tools for malaria elimination

Rolling cross-sectional surveys of patients and companions at health facilities

<table>
<thead>
<tr>
<th>Objective</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEROSURVEILLANCE: Determine residual malaria</td>
<td>ELISA, age-specific prevalence of species-specific antimalaria antibodies</td>
</tr>
<tr>
<td>infection through seropositivity in different age groups</td>
<td></td>
</tr>
<tr>
<td>MOLECULAR SURVEILLANCE: Identify asymptomatic and submicroscopic infections</td>
<td>Multiplex PCR of patients and companions</td>
</tr>
<tr>
<td>SPATIAL EPIDEMIOLOGY: Identify where infected and exposed individuals reside and generate real-time risk maps</td>
<td>Iteratively defined maps using a tablet-based geolocation application</td>
</tr>
</tbody>
</table>
Survey methodology

- Rolling cross sectional surveys conducted for one week at 1 – 3 month intervals

- Health facility workers trained to use RDTs, prepare blood smears and collect blood spots

- Demographic data recorded using tablet-based applications
Household geo-location

- Comparison of tablet-based applications to identify where participants live and work
- Maps using GPS points of known landmarks and satellite data to identify households

https://doi.org/10.1186/s12942-018-0141-0

International Journal of Health Geographics

Use of mobile technology-based participatory mapping approaches to geolocate health facility attendees for disease surveillance in low resource settings

Kimberly M. Fornace1,2,3, Henry Surendra1,2, Tommy Rowel Abidin3, Ralph Reyes4, Maria L. M. Macalinao5, Gillian Stresman1, Jennifer Luchavez5, Riris A. Ahmad6, Supargyono Supargyono2,5, Fe Espino4, Chris J. Drakeley1 and Jackie Cook6
Serosurveillance

- Serology can provide further evidence of elimination
- Exposure in younger individuals indicates recent exposure
- Identification of high transmission areas by combining with geographical data

![Map of Indonesia with a legend indicating Pf seropositive households, Central Java Province, and Yogyakarta Province. The map is labeled with "Hindia Ocean."]

Serological responses for falciparum

- **Seroprevalence:** Pf.SEA = 5.0%, ETRAMP5 = 0.8%, GEXP18 = 0.7%
 - **Sample size:** n = 2,241

![Graph showing age distribution of participants vs population with expected population distribution and sample distribution.](image)

- **Age distribution of participants vs population**
 - **Expected population distribution**
 - **Sample distribution**

![Graph showing antibody responses (MFI) with different colors for Pf.SEA, ETRAMP5, and GEXP18.](image)
Molecular surveillance

Malaria microscopy vs. RDT results of patients and companions visiting the Rizal, Palawan health facilities, 2016-2017

<table>
<thead>
<tr>
<th>YEAR 1 – 28 health facilities</th>
<th>Microscopy</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>JUNE 2016 - 2017 (All patients)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDT Negative</td>
<td>3798</td>
<td>55</td>
</tr>
<tr>
<td>RDT Positive</td>
<td>47</td>
<td>200</td>
</tr>
<tr>
<td>TOTAL</td>
<td>3845</td>
<td>255</td>
</tr>
<tr>
<td>SPR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JUNE 2016 - 2017 (All companions)</th>
<th>Microscopy</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>RDT Negative</td>
<td>1245</td>
<td>14</td>
</tr>
<tr>
<td>RDT Positive</td>
<td>13</td>
<td>31</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1258</td>
<td>45</td>
</tr>
<tr>
<td>SPR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*SPR: slide positivity rate; MISSED: % of positive companions

47% sub-patent infections (positive by PCR and negative by RDT and microscopy)
Freedom from Infection (FFI): Tools for Malaria Elimination

FFI used widely in veterinary epidemiology to confirm absence of infection

LSHTM leading new project to adapt FFI tools for malaria elimination

Partners:
• WHO Global Malaria Programme
• Clinton Health Access Initiative (CHAI)
• NMCPs / country institutions expressing interest

Data includes:
• Passive surveillance data from health facilities
• Active surveillance data from community-based surveys

For more information contact: LINDSEY WU
lindsey.wu@lshtm.ac.uk
1. HEALTH FACILITY DATA (passive case detection)

Health facility based PCD
• Catchment population
• Out-patient attendees

Community based ACD
• Catchment population
• Survey / test criteria (e.g., RACD, MSAT)

2. COMMUNITY SURVEYS (active case detection)

Number of individuals:
• Suspected for malaria
• Tested for malaria
• Malaria test positive
• Diagnostic test used
• Imported cases

Risk-based surveillance (e.g., forest workers)

Village surveys

Easy access groups (e.g., school surveys)
Kulon Progo Regency, Indonesia

2016 Malaria cases by health facility - Kulon Progo District

Freedom from Infection after 1 year of monthly malaria case reporting

Surveillance, month (2016)
Thank you to:

LSHTM team:
Kimberly, Lindsay, Effie, Henry, Chris JD